安防技术|基于深度学习的商品检索技术

   日期:2017-01-15     来源:建材之家    作者:安防之家    浏览:70    评论:0    
核心提示:商品检索是一门综合了物体检测、图像分类以及特征学习的技术。近期,很多研究者成功地将深度学习方法应用到这个领域。本文对这些方法进行了总结,然后概括地提出了商品特征学习框架以及垂类数据挖掘方式,最后介绍了商品检索技术在服装搭配中的应用。前言几年前,当人们还在感叹于网页购物的快速便捷时,各大电商巨头就“悄悄地”将它们的购物应用推广到了用户的手机里。从那一刻起
安防之家讯:商品检索是一门综合了物体检测、图像分类以及特征学习的技术。近期,很多研究者成功地将深度学习方法应用到这个领域。本文对这些方法进行了总结,然后概括地提出了商品特征学习框架以及垂类数据挖掘方式,最后介绍了商品检索技术在服装搭配中的应用。

前言

几年前,当人们还在感叹于网页购物的快速便捷时,各大电商巨头就“悄悄地”将它们的购物应用推广到了用户的手机里。从那一刻起,用户购买的习惯也在悄悄地发生着改变:人们不再局限于时间与地点,只要拥有一部联网的手机,就能轻松获取想要的商品。发展至今,移动设备的安全、高速等特点越来越获得人们的认可,也使得移动购物行为变得更加普遍。然而目前PC和Mobile终端中,用户基本都是通过文本关键词获取目标商品,这种单一的关键词描述有时很难获取用户的真实需求。

为此,电商们也进行了很多改进。其中最有效的一些做法是构建高度结构化的后台商品数据库。其目的是能够通过分析用户的查询来推荐一些更加精细粒度、时效性好、热度高的商品品类,并提供给用户一个限定了价格、品牌、风格等等的商品候选集合。这种基于文本的由粗到精的推荐方式,能够很好的帮助用户定位到具有精细且具体标签的商品。然而,当用户需求的商品的周边信息不明确时,很难通过抽象出有限的关键词来进行检索。这类商品包括:未知品牌的化妆品,样式新颖的家具或者时尚流行的服装等(如图1)。

图1:一些难以用关键词描述的商品

所见即所得

对于上述的问题,可以用一句话归结为:当需求物品难以用文本量化描述时, 给定它的一张图像,是否有可能推荐给用户相关的商品? 可以想象这样的场景: 当你看到一件喜欢的物品,只通过手机拍照将其图像上传购物网站,就能获取实物购买信息。如果商品检索能做到这样的“所见即所得”, 必将会给有购物需求的用户带来很大的便捷。

“所见”如何才能变成“所得”呢? 在回答这个问题之前, 首先需要了解商品检索中的难点问题:

商品品类繁多

小到柴米油盐,大到家具电器, 都可以称为商品。而且很多商品都包括多级且细致的分类,例如,家具可分为卧室家具、客厅家具、餐厅家具、书房家具等;服装的一级品类包括女装、男装、内衣、配饰与童装童鞋等, 女装又可分为连衣裙、T恤、雪纺衫等; 母婴中的童车童床类别可分为安全座椅、婴儿推车、婴儿床、婴儿床、垫餐、椅学步车等。由此可见, 好的检索技术不仅要识别这么多的商品类别, 并且需要区分每个类别下的不同商品实例; 同时后台商品数据库应该具有很高的覆盖面。

图2:多种多样的商品

同款与相似款的混淆

根据多级类目或属性进行商品划分的方式,尽管区分了大多数具有精细语义的商品,但在区分同款与相似款上的作用仍然是有限的,即无法确认两件分为一个类别的商品是相同款。 举例来说,已知两个人都穿着白色短袖圆领T恤, 因为姿态、角度、光照等影响,有可能会使得相似款更像同款,或者同款被误识别为相似款。这就是计算机视觉中经常碰到的类内差异性与类间相似性问题。图3的例子可以说明这两个问题。 左侧(a)中的上衣是同一款衣服,但由于人体姿态、悬挂方式、手臂遮挡、光线等问题的存在,使得它的颜色以及长度等表观属性具有很大的差异性;三款相似的黑色印花连衣裙如(b)所示,它们拥有相似的不规则的印花图案,以及黑色的底色和A字裙摆;这些特点都让他们很相似,但从袖型可看出它们非同款。

图3:同款与相似款服饰图像

其实,计算机视觉的各个领域都在解决这样的“所见即所得”难题, 即如何让机器能够自动准确的理解图像内容。随着深度学习的兴起, 包括人脸识别、 图像分类与物体检测在内的方向都取得了很多重要的进展, 也为深度学习在商品检索中的应用奠定了坚实的基础。

安防之家专注于各种家居的安防,监控,防盗,安防监控,安防器材,安防设备的新闻资讯和O2O电商导购服务,敬请登陆安防之家:http://anfang.jc68.com/
【温馨提示】本文内容和观点为作者所有,本站只提供信息存储空间服务,如有涉嫌抄袭/侵权/违规内容请联系QQ:275171283 删除!
 
标签: 防盗
打赏
 
世界经济高速发展,交通工具数量急剧增加,交通状况日益恶化。为解决这一问题,美国、欧洲、日本上世纪60年代末期开始,便开始了智能运输系统(ITS,IntelligentTransportationSystem)方面的研究。在进入21世纪后,世界经济高速发展,道路交通日益繁忙。交通是经济的发展的命脉,但因交通建设的发展滞后车辆增长的速度及经... 安防领域引入GIS不是偶然的,两者之间有着众多的联系,它们的结合将在较大程度上促进安防行业的发展,与此同时对GIS本身也是一种很好的补充和完善。二者部分相关结合点分析如下。目标地理信息化与地图数据管理地理信息化是指将安防领域涉及的与时空有关的目标按照地理信息的基本形式,结合形成包含图形对象和属性的GIS地...
更多>同类防盗安防资讯
0相关评论

推荐图文
推荐防盗安防资讯
点击排行